
Quirks and Challenges in the Design and
Verification of Efficient, High-Load Real-Time

Software Systems
Ulrich Margull1, Michael Niemetz2, Gerhard Wirrer2

11 mal 1 Software GmbH, Maxstraße 31, D-90762 Fürth, ulrich.margull@1mal1.com
2Continental Automotive GmbH, P.O. Box 100943, D-93009 Regensburg

michael.niemetz@continental-corporation.com

Abstract: Existing concepts for ensuring the correctness of
the timing behavior of real-time systems are often based
on schedulability analysis methods using exact proofs. Due
to the complexity of the scheduling problem, today typically
worst case approximations are used to judge the reliability
of the timing behavior in software systems. In industrial
practice, however, this leads to large safety margins in the
design of products which are commercially unacceptable in
many application domains. For such highly-efficient systems,
schedulability analysis methods that are too pessimistic
are of limited benefit. As a consequence, penetration of
real-time analysis is suboptimal in the industrial software
development, which possibly leads to insufficient quality of
the developed products. Therefore, new approaches are
needed to support the design and validation of high-load
real-time systems with an average CPU load of 90% or
above to improve the situation.

Keywords: Scheduling, real-time systems, highly efficient
systems, robustness, automotive power train

I. Introduction

In safety critical real time devices, the design and
test of the timing behavior plays a central role. With
the increasing complexity of devices during the last
years, this fact became more and more a consensus
in the embedded systems community. Still, in several
application domains for embedded devices the pene-
tration with concepts resulting from research activities
is quite low, especially when compared to the desktop
and server domain. This is astonishing, as embedded
devices are typically facing higher requirements in
terms of real-time and reliability.
While a state of the art schedulability analysis based
on worst case execution times and maximum interrupt
rates is able to provide the proof that the timing
behavior of the system is guaranteed under all cir-
cumstances for each calculation instance, this leads
typically to a normal load of the system which is
around 50-60% of CPU calculation power. This safety
margin, which will probably never be needed during
the lifetime of the system, increases the cost of the
system significantly, being especially problematic in
case of higher volumes.
In the automotive domain, for example, huge volumes
are combined with the need for safe systems plus

Fig. 1. Partial (top) and accumulated CPU load (bottom) of time-
triggered, engine-related and ISR-based calculations

a high availability and enhanced fault tolerance. This
requires to reduce the safety margin as much as
possible, while keeping a safe and operational unit.

In this paper we will show as an example a non-
trivial and significantly event driven embedded system,
which has been proven to work reliably with CPU
loads above 90%. Afterwards, we will discuss some
aspects where an improved theoretical understanding
is required in order to design and verify such systems
systematically.



II. System Description

Engine controls units (ECU) have strong real-time re-
quirements. More than 80% of all timing requirements
are faster than 10ms. In specific system scenarios,
e.g. car going downhill with continuous engine over-
speed, an extreme high average CPU load is achieved
which can reach even more than 90%. Figure 1 shows
the load caused by calculations having been assigned
to a certain deadline1 in relation to the deadlines in a
typical application.
The upper part of Figure 1 shows the typical load
associated with time-triggered (Load TT), with engine-
synchronous (Load ENG) and with interrupt associ-
ated calculations. Only about half of all calculations
are time-triggered, the rest is event-based, either de-
pendent on the engine position or on other event
sources.
On the bottom part of Figure 1 the same load is shown,
this time accumulated over the deadline. On the right
side the total load of approximately 95% is shown.
Please note that this is the average load, measured
over many seconds, not only a short peak!
From an overall system point of view many of these
deadlines are really hard deadlines. For example,
missing an injection or ignition point in time can
lead to engine misfire, missed combustion cycles or
even engine damage and is therefore not acceptable.
Being able to reach such high loads under those
requirements shows to what elaborate performance
the industry is driven to in the quest for efficient,
affordable systems.

III. Challenges for System Design and
Verification

When designing such a system, one faces a set of
contradicting requirements: the system has to fulfill
safety requirements, it must be reliable, and highly effi-
cient all at the same time. There are several strategies
to implement these requirements, and they must be
well-balanced against each other.
The real-time behavior of the system is strongly influ-
enced by the scheduling approach and the distribution
of the calculation loads. In the automotive industry,
operating systems compliant to the OSEK standard
are used in most control units. It provides a simple
priority-based scheduling with priority-ceiling protocol.
However, fast calculations with deadlines of 100µs or
below are often implemented as interrupts. The main
challenges in system design is the partitioning of the
calculations and how to distribute them on different
priority levels.
One critical point is to determine whether a given sys-
tem will work correctly with the chosen loads and prior-
ity levels. Using a classical response time analysis [1],
one would determine the worst-case execution time

1We are using relative deadline, i.e. the time duration from
activation of one job instance until its calculation is finished.

(WCET) for all calculations, model the maximum event
stimuli and event rates, for calculating the feasibility.
However, this approach is by far too pessimistic. For
example, for a typical ECU system, such an analysis
easily yields a requirement for 130% to 200% of the
available CPU resources! In contrast, the industrial
practice shows that the systems are working correctly
and are robust and fail-safe in operation. The conse-
quence is that a WCET schedulability analysis has no
real meaning for productive systems: if it is feasible,
then it is not efficient enough, and if it is efficient, the
analysis yields a ”not feasible” result!
A rather pragmatic proceeding to overcome this
dilemma is what we call the optimistic approach. Here,
several aspects of pessimism are replaced by more
optimistic approaches. For example, Figure 2 (top)
shows an allegory of the system state of an electronic
control unit. The bubble in the middle represents all
the state space that is explored in operation with the
”center of mass” denoting an average CPU utilization
of about 60%.
In order to guarantee schedulability, a classic anal-
ysis of this system has to contain some amount of
pessimism which is indicated by the box around the
bubble.
Using an optimistic approach, we remove the pes-
simism where possible, thus concentrating on the core
of the state space while neglecting some of the rarely
used corners (Figure 2 middle), which in the end
allows higher average system utilizations (Figure 2
bottom), e.g. up to 90%. However, since we no longer
guarantee schedulability in all possible circumstances,
the system has to be designed quite differently. It must
be robust in such a way that sporadic overload situa-
tions are handled gracefully, as well as encapsulating
safety relevant or other important functions in areas
that can be guaranteed to be scheduled correctly (or
are completely independent of the scheduling, e.g. by
implementation in hardware).
A classic feasibility analysis contains different kinds of
pessimism that can be questioned. One way to reduce
this pessimism is to use the average execution times
(AET) instead of the WCET normally used in classic
feasibility analysis.
Our experience shows that when using AET we are
able to model the system realistically even at very high
CPU loads. On the other hand there is the risk that an
AET based analysis might give a too optimistic picture
of the system, so the analysis results need to be
used carefully and require backup of measurements
from the real system. In order to improve the analysis,
we add different levels of stochastic behavior to the
system: variation of stimuli or variation of runtime (e.g.
like [2]).
Another useful analysis strategy which we have suc-
cessfully applied are stress-tests, where the system
is driven artificially into a crisis by adding a dummy
load according to a certain pattern. Stress tests help to



Fig. 2. The overall system load typically has a complex dependency
on the current system state. The details of this dependency are often
not known in advance due to the complexity of the system. In the
figures above, the space of valid system states is represented by the
ragged blob-like shape assuming for further simplification that every
position within the shape has the same probability of occurrence.
Ignoring small areas (with a consequently small probability) during
the design of the system allows a more efficient hardware usage.
However, this leads to timing violations in some dedicated operation
states which need to be known and handled safely.

understand the system dynamics in critical conditions:
At which point does my system break down? How
does it break-down, what are the weak points leading
to a break-down?
The analysis of our systems is further complicated
by the fact that our systems are too complex to be
fully understood in theory. For example, they are not
rate-monotonic, not even strictly deadline-monotonic,
they are partly time-triggered, partly event-based, the
scheduling is to large parts cooperative, not preemp-
tive, data dependencies cannot be modeled com-
pletely due to the complexity of the software (more
than 150.000 dependencies), etc. No analysis method
seems to be available that takes all restrictions into
account, or is able to handle such complexity. As a
pragmatic approach we use simulation methods: a
model is created which is abstract enough to allow
easy simulation, but still detailed enough to reflect
the relevant timing aspects of the system (see [3]–
[9]). The advantage is that nearly all constraints can
be modeled in short time, enabling us to evaluate a
system in a fast, flexible way. The main disadvantage
of a simulation approach lies in the fact that one
carefully has to prepare the simulation, otherwise the
worst-case scenarios are not triggered, and the result
might then be too optimistic.

IV. Need for Theoretical Understanding

As it was shown in the previous chapters, it is ob-
viously possible to design systems where the state
of the art methods of schedulability analysis can not
deliver a valid result while the system is behaving
well. Today, several state of the art techniques like
e.g. EDF scheduling are available to be introduced
in the automotive powertrain domain [10] for coping
with the the challenges described above. Besides the
application of existing concepts also new approaches
are required.
In order to manage the development and quality con-
trol for such systems, several additional research fields
would be of interest.
First of all, design principles need to be developed
which allow to design robust systems that are able
to work up to very high processor loads without fail-
ure due to execution time problems. This may for
example involve special scheduling strategies, design
patterns for algorithms, a more flexible approach for
classifying and handling of deadlines, e.g. by allow-
ing sporadic, i.e. non successive, deadline misses,
or concepts how to distribute processes to tasks or
CPU cores. Also research to evaluate requirements
regarding their consequences for the robustness of
the timing behavior would be extremely helpful, as this
may help to influence the engineering of the system in
a very early phase. Depending on certain properties,
some functional requirements will not only consume
the resources needed for their implementation, but
will also increase the required resources (typically



calculation power) that have to be kept as a reser-
voir to ensure a reliable and safe operation. Finally,
new concepts for validating systems are needed, e.g.
by introducing probabilistic testing approaches, or by
defining metrics that show the degree of dynamic
robustness of the system. Such research would also
allow to compare different project configurations and
thus enable the definition of quality thresholds and
successive improvement of the software as described
in [11].
In general, for domains like automotive powertrain
new strategies are required for creation of efficient,
high load systems above 90% average CPU load
that are at the same time safe, reliable and efficient.
The focus needs to be on robust systems that are
capable of handling small disturbances and a certain
amount of “glitches” in the system gracefully, rather
then on proving 100% error-free and “feasibility under
all possible conditions”. Here, maybe, the embedded
systems need to learn from biological systems which
are far from being perfect — but are often astonish-
ingly reliable, robust and efficient.

Acknowledgment
We thank Denis Claraz and Annette Kempf for inspir-
ing discussions and helpful comments.

References
[1] N. Audsley, “Optimal priority assignment and feasibility of static

priority tasks with arbitrary start times,” Real-Time Systems,
1991.

[2] S. Manolache, Schedulability analysis of real-time systems
with stochastic task execution times. Department of Computer
and Information Science, Linköpings universitet, 2002.

[3] INCHRON GmbH, “chronSim,” http://www.inchron.de/. [On-
line]. Available: http://www.inchron.de/

[4] R. Münzenberger, M. Dörfel, U. Margull, and G. Wirrer,
“Entwurf echtzeitfähiger Steuergerätesoftware in FlexRay-
Netzwerken,” in KFZ-Entwicklerform Design&Elektronik, 2007.

[5] M. Deubzer, U. Margull, J. Mottok, M. Niemetz, and
G. Wirrer, “Partitionierungs-Scheduling von Automotive Re-
stricted Tasksystemen auf Multiprozessorplattformen,” in Pro-
ceedings of the 2nd Embedded Software Engineering
Congress, ser. ISBN 978-3-8343-2402-3, December 2009, pp.
536–542.

[6] M. Deubzer, J. Mottok, U. Margull, and M. Niemetz, “Efficient
Scheduling of Reliable Automotive Multi-core Systems with
PD2 by Weakening PFAIR Tasksystem Requirements,” in Pro-
ceedings of the Automotive Safety & Security 2010 (Accepted
for Publishing), June 2010.

[7] M. Deubzer, F. Schiller, J. Mottok, M. Niemetz, and U. Margull,
“Effizientes Multicore-Scheduling in Embedded Systemen: Teil
1 - Multicore-Scheduling für zuverlässige Echtzeitsysteme,”
2010.

[8] ——, “Effizientes Multicore-Scheduling in Embedded Syste-
men: Teil 2 - Ein simulationsbasierter Ansatz zum Vergleich
von Scheduling-Algorithmen,” 2010.

[9] R. Davis and A. Burns, “A survey of hard real-time scheduling
algorithms and schedulability analysis techniques for multipro-
cessor systems,” University of York, Department of Computer
Science, techreport YCS-2009-443, 2009.

[10] U. Margull, M. Niemetz, and G. Wirrer, “Improved Schedu-
lability using EDF in Automotive Powertrain Software,” to be
published.

[11] F. König, D. Boers, F. Slomka, U. Margull, M. Niemetz, and
G. Wirrer, “Application specific performance indicators for
quantitative evaluation of the timing behavior for embedded
real-time systems,” in Date 2009, 2009.


